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bstract

This paper attempted the feasibility to determine content total polyphenols content in green tea with near infrared (NIR) spectroscopy coupled
ith an appropriate multivariate calibration method. Partial least squares (PLS), interval PLS (iPLS) and synergy interval PLS (siPLS) algorithms
ere performed comparatively to calibrate regression model. The number of PLS components and the number of intervals were optimized according

o root mean square error of cross-validation (RMSECV) in calibration set. The performance of the final model was evaluated according to root
ean square error of prediction (RMSEP) and correlation coefficient (R) in prediction set. Experimental results showed that the performance of
iPLS model is the best in contrast to PLS and iPLS. The optimal model was achieved with R = 0.9583 and RMSEP = 0.7327 in prediction set. This
tudy demonstrated that NIR spectroscopy with siPLS algorithm could be used successfully to analysis of total polyphenols content in green tea,
nd revealed superiority of siPLS algorithm in contrast with other multivariate calibration methods.

2007 Elsevier B.V. All rights reserved.
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. Introduction

Tea polyphenols substance is of great interest due to its ben-
ficial medicinal properties [1]. There is increasing evidence
hat polyphenols substances found in tea can enhance general
ealth. Recently, many researches have suggested that antioxi-
ants found in polyphenols substances, may have an important
ole to prevent cardiovascular disease [2], chronic gastritis [3,4]
nd some cancers [5,6,7]. Additionally, polyphenols compounds
re mainly responsible for the characteristic astringent and bit-
er taste of tea brews [8]. In recent years, many methods of
nalysis have been employed to determine total polyphenols
ontent in tea, such as colorimetric measurements and titra-
ion method with potassium permanganate [9]. However, these

ethods are all time-consuming. Near infrared reflectance spec-

roscopy is a fast, accurate and non-destructive technique that
an be employed as a replacement of time-consuming chemical
ethod.

∗ Corresponding author. Tel.: +86 511 8790308; fax: +86 511 8780201.
E-mail address: q.s.chen@hotmail.com (Q. Chen).
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Near infrared (NIR) spectroscopy has been proved to be a
owerful analytical tool used in the agricultural, nutritional,
etrochemical, textile and pharmaceutical industries [10–19].
ince 1990s, attempts have been made to simultaneously predict
lkaloids and phenolic substance in green tea leaves using near
nfrared spectroscopy [20,21]. Some studies on the quantitative
nalysis of total antioxidant capacity in green tea by NIR are also
eported in 2003 and 2004 [22,23]. Recently, Some researchers
pplied near infrared spectroscopy to analyze simultaneously
he content of free amino acids, caffeine, total polyphenols and
mylose in green tea [24–27].

For these works mentioned above, near infrared spectral
ata calibrations are often made with the classical multivari-
te calibration analysis, for example, partial least squares (PLS)
egression and artificial neural net (ANN). Many spectral pre-
reatment methods have been developed to reduce the effects of
ariations in the spectral data that are not related to the chemical
ariations in the samples [24,25]. These methods often improve

he calibrations, but they do not take into account that there might
e spectral regions that do not contain any information about the
hemical variations in the samples [28]. In fact, one of the major
roblems in multivariate data analysis is to select appropriate
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sample was collected three times. The average of the three spec-
tra, which were collected from the same tea sample, was used in
the next analysis. The temperature was kept around 25 ◦C and
the humidity was kept at a steady level in the laboratory.
Q. Chen et al. / Journal of Pharmaceutica

pectral region in order to achieve the best performance. Some
esearchers have constructed PLS models in different spectral
egions to quantify compositions content in tea, however, these
egions were selected manually [27]. Spectral regions selected
anually might as well weaken the performance of the cali-

ration model without prior experienced knowledge about NIR
pectroscopy.

In recent years, both theoretical and experimental evidence
ave been published that spectral region selection can signifi-
antly improve the performance of these calibration techniques
29,30]. It is so important to select specific regions where
ontain much information that generate more stable models
ith superior interpretability, and this will produce the lowest
rediction error. Some methods have been recently described
n the literature to implement spectral region selection and
ave used PLS for multivariate calibration in each subset
30].

A graphically oriented local modeling procedure called inter-
al partial least squares (iPLS) was presented for usage on NIR
pectral data [30,31]. It has shown that selective optimum inter-
al in the spectral data could give precision prediction models.
orgaard et al. (2000) also proposed a method called Synergy

nterval PLS (siPLS) to select several intervals spectra data
hich could split the data set into a number of intervals (variable-
ise) and calculates all possible PLS model combinations of

wo, three or four intervals.
In this research, we investigate and compare the results pro-

ided by PLS, iPLS and siPLS procedures for NIR quantitative
nalysis of total polyphenols content in green tea. We system-
tically studied the different steps that have to be gone through
n model calibration. The number of PLS factor and the number
f regions intervals were optimized according to the root mean
quare error of cross-validation (RMSECV) in calibration set.
he performance of the final model was evaluated according

o the root mean square error of prediction (RMSEP) and the
orrelation coefficient (R) in prediction set.

. Materials and methods

.1. Sample preparation

All tea samples came from different provinces in China, and
hey were all already on stock within 4 months period. Taking
nto consideration the heterogeneity of tea samples, the samples
ould be ground before analysis. For the grinding, the whole

ealeaves were put into a small electric coffee mill and ground
uring 10 s. After this procedure, the powders are sieved with a
esh width 500 �m and these sieved powders are used for the

urther analysis.

.2. Chemical analysis

Total polyphenols content were reference measured by a

hotometric Folin-Ciocalteu assay according to a proposed
nternational standard method [9]. Absorbance (E) at 540 nm of
he reaction solution is determined in a 1 cm light-path cell by a
engguang-752 spectrophotometer (Lengguang Optical Instru-

F
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ent Ltd. Co., Shanghai, China). The calibration standard is
allic acid.

.3. Spectra collection

The NIR spectra were collected in the reflectance mode using
he Antaris. Near infrared spectrophotometer (Thermo Electron
o., USA) with an integrating sphere. Each spectrum was the
verage spectrum of 32 scans. The range of spectra is from
0,000 to 4000 cm−1, and the data were measured in 3.856 cm−1

ntervals, which resulted in 1557 variables.
The standard sample accessory holder was used for perform-

ng the tea spectra collection. The sample accessory holder is
ample cup specifically designed by Thermo Electron Co. For
ach tea sample, 10 ± 0.1 g of dry tealeaves were filled into
he sample cup in the standard procedure depending upon the
ulk density of materials. The corresponding amount of dry tea
owders was densely packed into the sample cup and then com-
ressed by closing it. When spectra collecting, tea sample was
ollected one times every rotating the cup 120◦ angle, thus, each
ig. 1. Spectra of tea obtained from (a) raw data and (b) SNV preprocessing
ata.
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R =
√

1 −
∑n

i=1(ŷi − yi)2∑n
i=1(yi − ȳ)2 (3)

Table 1
The reference measurements and sample numbers in calibration and prediction
set

Set Units (%) S.N.a Range Mean S.D.b
70 Q. Chen et al. / Journal of Pharmaceutica

.4. Spectral preprocessing [32]

Fig. 1(a) presents the raw spectral profile of tea, and raw
pectral data need be conducted on spectral preprocessing. In
his study, three spectral preprocessing methods were applied
omparatively, and they were standard normal variate trans-
ormation (SNV), mean centering (MC) and multiplicative
catter correction (MSC). SNV is a mathematical transfor-
ation method of the log(1/R) spectra used to remove slope

ariation and to correct for scatter effects. Each spectrum is cor-
ected individually by first centering the spectral values, and
hen the centered spectrum is scaled by the standard deviation
alculated from the individual spectral values. Mean center-
ng is to calculate the average spectrum of the data set and
ubtract the average from each spectrum. MSC is another
mportant procedure for the correction of scatter light, on the
asis of different particle sizes, and the technique is also used
o correct for additive and multiplicative effects in the spec-
ra.

To compare results obtained by three preprocessing methods,
NV preprocessing method is as good as MSC and much bet-

er than MC. This is because dry tealeaves are particle solids,
hich bring to scatter light easily; while, SNV and MSC spectral
reprocessing methods can remove slope variation and correct
ight scatter due to different particle sizes. Therefore, SNV
pectral preprocessing method was applied in this research,
nd the spectra after SNV preprocessing are presented in
ig. 1(b).

.5. Software

All algorithms were implemented in Matlab V7.0 (Math-
orks, USA) under Windows XP. Result Software (Antaris
ystem, Thermo Electron Co., USA) was used in NIR spec-

ral data acquisition. The iPLS and siPLS algorithms used
n this work were downloaded from http://www. models.
vl.dk/.

. Results and discussion

.1. Spectra investigation

Fig. 1(a) shows the spectra for the original data. Seen from
ig. 1(a), the intensive spectral peaks are mainly in the region of
000–8500 cm−1. In additionally, some spectral regions exhibit-
ng a high noise level (e.g. 10000–9000 and 5000–4000 cm−1)
hould be excluded in data processing. According to the investi-
ation of spectra, the spectral region of 5002.44–9002.08 cm−1

as selected in next analysis.

.2. Calibration of models

All 71 samples are divided into two subsets. One of sub-

et is called calibration set, which is used to build model, and
ther is called prediction set, which is used to test the robust-
ess of model. To avoid bias in subset division, this division is
ade as follows: all samples had been sorted according to their

C
P
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espective y-value (viz. the reference measurement value of total
olyphenols content). In order to come to a 3/2 division of cali-
ration/prediction spectra, the two spectra of every five samples
re divided into the prediction set, so that finally the calibra-
ion set contains 43 spectra, the remaining 28 spectra constitute
he prediction set. Seen from Table 1, the range of y-value in
alibration set covers the range in the prediction set, therefore
he distribution of the samples is appropriate in calibration and
rediction set.

The performance of the final PLS model is evaluated accord-
ng to the root mean square error of prediction (RMSEP) and
he correlation coefficient (R) in prediction set. For RMSECV,
leave-one-sample-out cross-validation is performed: the spec-

rum of one sample of the calibration set is deleted from this
et and a PLS model is built with the remaining spectra of
he calibration set. The left-out sample is predicted with this

odel and the procedure is repeated with leaving out each of
he samples of the calibration set. The RMSECV is calculated as
ollows:

MSECV =
√∑n

i=1(ŷ\i − yi)2

n
(1)

here n is the number of samples in the calibration set, yi is the
eference measurement result for sample i and ŷ\i is the esti-
ated result for sample i when the model is constructed with

ample i removed. The number of PLS factors included in the
odel is chosen according to the lowest RMSECV. This pro-

edure is repeated for each of the preprocessed spectra. For the
est set, the root mean square error of prediction (RMSEP) is
alculated as follows:

MSEP =
√∑n

i=1(yi − ŷi)2

n
(2)

here n is the number of samples in the test set, yi is the reference
easurement result for test set sample i and ŷi is the estimated

esult of the model for test sample i.
Finally the model with the overall lowest RMSECV will be

elected as final model. Correlation coefficients between the
redicted and the measured value are calculated for both the
alibration and the test set, which are calculated as follows Eq.
3), where ȳ is the mean of the reference measurement results
or all samples in the train and test sets.
alibration set g/g 43 14.93–25.46 19.61 2.71
rediction set g/g 28 15.84–24.39 19.69 2.61

a S.N., sample number.
b S.D., standard deviation.

http://www.models.kvl.dk/
http://www.models.kvl.dk/
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of siPLS model calibration when split the spectra into different
number of intervals. The optimal siPLS model was obtained
with 23 intervals and 5 PLS components, because the low-
est RMSECV is 0.7514, which is prominent with the bold in
Fig. 2. Reference measured vs. NIR predicted by PLS in calibration set.

.2.1. Results of PLS model
In the application of PLS algorithm, it is generally known

hat the number of PLS components is a critical parameter in
alibrating model. The optimum number of PLS components is
etermined by the lowest root mean square error cross-validation
RMSECV). The lowest RMSECV is 0.9141 when 6 PLS com-
onents are included in calibration model. Therefore the optimal
umber of PLS components is 6.

Fig. 2 is the scatter plot showing a correlation between ref-
rence measured and NIR predicted in calibration set by PLS
odel. Here, the value of root mean square error of cross-

alidation (RMSECV) is 0.9141, and correlation coefficient (R)
s 0.9400 in calibration set. When the performance of PLS model
s evaluated by the samples in prediction set, the root mean
quare error of prediction (RMSEP) is 1.0719 and correlation
oefficient (R) is 0.9085 in prediction set.

.2.2. Results of iPLS model
The development of spectral interval selection was first

ccomplished by iPLS. The interval PLS (iPLS) algorithm
30,31] used here was developed by Norgaard et al. (2000). The
rinciple of this algorithm is to split the spectra into some smaller
quidistant regions, next, to develop PLS regression models for
ach of the sub-intervals. Thereafter, root mean square error of
ross-validation (RMSECV) is calculated for every sub-interval.
he region with the lowest RMSECV is chosen.

It is serious effect on the performance of iPLS model when
plit the spectra into different number of intervals, therefore, the
umber of intervals should been optimized according RMSECV.
esults show that the optimal iPLS model is obtained with 12

ntervals and 6 PLS components, and the lowest RMSECV is
.9348 when the optimal interval selected is number 3, corre-
ponding to wavenumbers in the range 5673.55–6005.24 cm−1,
hich is shown in Fig. 3.

Fig. 4 is the scatter plot showing a correlation between

eference measured and NIR predicted in calibration set by
PLS model. Here, the value of root mean square error of
ross-validation (RMSECV) is 0.9348, and correlation coeffi- F
ig. 3. Optimal spectral region selected by iPLS with wavenumbers
673.55–6005.24 cm−1.

ient (R) is 0.9374 in calibration set. When the performance
f iPLS model is evaluated by the samples in prediction
et, the root mean square error of prediction (RMSEP) is
.3307 and correlation coefficient (R) is 0.8550 in prediction
et.

.2.3. Results of siPLS model
Synergy interval PLS (siPLS) algorithm used here was also

eveloped by Norgaard et al. (2000) [30]. The basic principle
f this algorithm is same as iPLS. First, it is to split the data set
nto a number of intervals (variable-wise), next, to develop PLS
egression models for all possible combinations of two, three
r four intervals. Thereafter, RMSECV is calculated for every
ombination of intervals. The combination of intervals with the
owest RMSECV is chosen.

The number of intervals was also optimized according
MSECV in siPLS model calibration. Table 2 shows the results
ig. 4. Reference measured versus NIR predicted by iPLS in calibration set.
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Table 2
Results of siPLS calibration model selected different spectral regions

Number of intervals PLS components Selected intervals RMSECV

10 5 [8 10] 0.8415
11 6 [6 7 8 10] 0.8631
12 5 [9 12] 0.8404
13 5 [10 13] 0.8275
14 5 [11 14] 0.8343
15 9 [3 4] 0.8124
16 9 [3 4] 0.7957
17 5 [10 13 17] 0.8225
18 5 [11 14 18] 0.8131
19 5 [14 18 19] 0.8139
20 5 [12 14 16 20] 0.8224
21 5 [15 16 20] 0.8199
22 5 [16 17 21] 0.7965
23 5 [17 18 22] 0.7514
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4 9 [4 5 6] 0.7620
5 6 [9 10 16 22] 0.8172

able 2. The optimal combinations of intervals selected are
umber 17, 18 and 22. It is corresponding to 7791.01–7960.71,
964.57–8134.27 and 8658.82–8828.52 cm−1 in the spectral
egions, which is shown in Fig. 5.

Fig. 6 is the scatter plot showing a correlation between
eference measured and NIR predicted in calibration set by
PLS model. Here, the value of root mean square error of
ross-validation (RMSECV) is 0.7514, and correlation coeffi-
ient (R) is 0.9597 in calibration set. When the performance
f siPLS model was evaluated by the samples in prediction
et, the root mean square error of prediction (RMSEP) is
.7372 and correlation coefficient (R) is 0.9583 in prediction
et.

.2.4. Discussion of the results
Comparing three results from PLS, iPLS and siPLS mod-
ls, siPLS is the best, next to PLS, while, the performance of
PLS is the worst. Such phenomena are explained by the fol-
owing reasons. (1) PLS is performed on full spectral region
5002.44–9002.08 cm−1) to calibrate global model, so some

ig. 5. Optimal spectral region selected by siPLS with wavenumbers
791.01–7960.71, 7964.57–8134.27 and 8658.82–8828.52 cm−1.
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ig. 6. Reference measured versus NIR predicted by siPLS in calibration set.

oisy spectral information inevitably weaken the performance
f model. (2) iPLS actually gives an overview spectral data to
elect the interesting spectral region and remove some noisy
egions, but only one interval was selected to calibrate PLS
odel, so that useful spectral information was removed, there-

ore, the performance of model inevitably decline. (3) In contrast
ith iPLS, siPLS shows its incomparable superiority. siPLS not
nly possesses same advantages as iPLS, but also overcome the
isadvantages of iPLS, because siPLS combines with two, three
r four intervals to calibrate PLS model, so as not to lose much
seful information in calibrating model. In conclusion, the siPLS
s superior to iPLS and full spectrum PLS.

. Conclusion

The overall results sufficiently demonstrate that total
olyphenols content in green tealeaves can be determined by
IR spectroscopy coupled an appropriate multivariate calibra-

ion method. Compared with PLS, iPLS and siPLS algorithms,
he performance of siPLS model is the best. The optimal calibra-
ion model was achieved with R = 0.9583 and RMSEP = 0.7327
n prediction set. This study demonstrated that NIR spectroscopy
ith siPLS algorithm could be applied to determine the content

otal polyphenols in green tea, and siPLS revealed its superi-
rity in contrast with other multivariate calibration methods. It
an be concluded that many valid components in tea can be
nalyzed fast and simultaneously by NIR spectroscopy coupled
ith siPLS algorithm, and this real-time, at-site measurement
ill significantly improve the efficiency of quality control and

ssurance.
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